Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Characteristic and Permanent Polynomials of a Matrix

Published 16 Jan 2017 in cs.DM | (1701.04420v3)

Abstract: There is a digraph corresponding to every square matrix over $\mathbb{C}$. We generate a recurrence relation using the Laplace expansion to calculate the characteristic, and permanent polynomials of a square matrix. Solving this recurrence relation, we found that the characteristic, and permanent polynomials can be calculated in terms of characteristic, and permanent polynomials of some specific induced subdigraphs of blocks in the digraph, respectively. Interestingly, these induced subdigraphs are vertex-disjoint and they partition the digraph. Similar to the characteristic, and permanent polynomials; the determinant, and permanent can also be calculated. Therefore, this article provides a combinatorial meaning of these useful quantities of the matrix theory. We conclude this article with a number of open problems which may be attempted for further research in this direction.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.