On the Characteristic and Permanent Polynomials of a Matrix (1701.04420v3)
Abstract: There is a digraph corresponding to every square matrix over $\mathbb{C}$. We generate a recurrence relation using the Laplace expansion to calculate the characteristic, and permanent polynomials of a square matrix. Solving this recurrence relation, we found that the characteristic, and permanent polynomials can be calculated in terms of characteristic, and permanent polynomials of some specific induced subdigraphs of blocks in the digraph, respectively. Interestingly, these induced subdigraphs are vertex-disjoint and they partition the digraph. Similar to the characteristic, and permanent polynomials; the determinant, and permanent can also be calculated. Therefore, this article provides a combinatorial meaning of these useful quantities of the matrix theory. We conclude this article with a number of open problems which may be attempted for further research in this direction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.