Papers
Topics
Authors
Recent
2000 character limit reached

Scenario Reduction Revisited: Fundamental Limits and Guarantees

Published 15 Jan 2017 in math.OC and math.PR | (1701.04072v1)

Abstract: The goal of scenario reduction is to approximate a given discrete distribution with another discrete distribution that has fewer atoms. We distinguish continuous scenario reduction, where the new atoms may be chosen freely, and discrete scenario reduction, where the new atoms must be chosen from among the existing ones. Using the Wasserstein distance as measure of proximity between distributions, we identify those $n$-point distributions on the unit ball that are least susceptible to scenario reduction, i.e., that have maximum Wasserstein distance to their closest $m$-point distributions for some prescribed $m<n$. We also provide sharp bounds on the added benefit of continuous over discrete scenario reduction. Finally, to our best knowledge, we propose the first polynomial-time constant-factor approximations for both discrete and continuous scenario reduction as well as the first exact exponential-time algorithms for continuous scenario reduction.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.