Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Strong pseudoconvexity in Banach spaces (1701.03823v5)

Published 13 Jan 2017 in math.CV

Abstract: Having been unclear how to define that a domain is strictly pseudoconvex in the infinite-dimensional setting, we develop a general theory having Banach spaces in mind. We first focus on finite dimension and eliminate the need of two degrees of differentiability of the boundary of a domain, since differentiable functions are difficult to find in infinite dimension. We introduce $\ell$-strict pseudoconvexity for $\ell\geq 1$, $1$-strict pseudoconvexity at the boundary, $\ell$-uniform pseudoconvexity for $\ell\geq 0$ and finally strong pseudoconvexity. Defining $\ell$-strict pseudoconvexity and $\ell$-uniform pseudoconvexity for $\ell<2$ depends on extending a notion of strict plurisubharmonicity to cases lacking $C2$-smoothness, first studying it in the sense of distribution and then considering it in infinite dimension. Examples of strictly plurisubharmonic functions as well as strongly pseudoconvex domains are presented, which end up related to important classical Banach spaces. Finally, some solutions to the inhomogeneous Cauchy-Riemann equations for $\overline{\partial}$-closed $(0,1)$-forms in infinite-dimensional domains are shown, giving new information about domains affinely isomorphic to the ball of $\ell_1$ which appeared in the study of strong pseudoconvexity and some more domains biholomorphically related to open and convex domains of $\ell_1$ such as its ball.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.