Papers
Topics
Authors
Recent
2000 character limit reached

Representation Stability for Configuration Spaces of Graphs (1701.03490v2)

Published 12 Jan 2017 in math.AT

Abstract: We consider for two based graphs $G$ and $H$ the sequence of graphs $G_k$ given by the wedge sum of $G$ and $k$ copies of $H$. These graphs have an action of the symmetric group $\Sigma_k$ by permuting the $H$-summands. We show that the sequence of representations of the symmetric group $H_q(\mathrm{Conf}n(G\bullet); \mathbf{Q})$, the homology of the ordered configuration space of these spaces, is representation stable in the sense of Church and Farb. In the case where $G$ and $H$ are trees, we provide a similar result for glueing along arbitrary subtrees instead of the base point. Furthermore, we show that stabilization alway holds for $q = 1$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.