Representation Stability for Configuration Spaces of Graphs (1701.03490v2)
Abstract: We consider for two based graphs $G$ and $H$ the sequence of graphs $G_k$ given by the wedge sum of $G$ and $k$ copies of $H$. These graphs have an action of the symmetric group $\Sigma_k$ by permuting the $H$-summands. We show that the sequence of representations of the symmetric group $H_q(\mathrm{Conf}n(G\bullet); \mathbf{Q})$, the homology of the ordered configuration space of these spaces, is representation stable in the sense of Church and Farb. In the case where $G$ and $H$ are trees, we provide a similar result for glueing along arbitrary subtrees instead of the base point. Furthermore, we show that stabilization alway holds for $q = 1$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.