A support and density theorem for Markovian rough paths (1701.03002v2)
Abstract: We establish two results concerning a class of geometric rough paths $\mathbf{X}$ which arise as Markov processes associated to uniformly subelliptic Dirichlet forms. The first is a support theorem for $\mathbf{X}$ in $\alpha$-H\"older rough path topology for all $\alpha \in (0,1/2)$, which answers in the positive a conjecture of Friz-Victoir (2010). The second is a H\"ormander-type theorem for the existence of a density of a rough differential equation driven by $\mathbf{X}$, the proof of which is based on analysis of (non-symmetric) Dirichlet forms on manifolds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.