Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Parallel algorithms and probability of large deviation for stochastic optimization problems (1701.01830v2)

Published 7 Jan 2017 in math.OC

Abstract: We consider convex stochastic optimization problems under different assumptions on the properties of available stochastic subgradient. It is known that, if the value of the objective function is available, one can obtain, in parallel, several independent approximate solutions in terms of the objective residual expectation. Then, choosing the solution with the minimum function value, one can control the probability of large deviation of the objective residual. On the contrary, in this short paper, we address the situation, when the value of the objective function is unavailable or is too expensive to calculate. Under "`light-tail"' assumption for stochastic subgradient and in general case with moderate large deviation probability, we show that parallelization combined with averaging gives bounds for probability of large deviation similar to a serial method. Thus, in these cases, one can benefit from parallel computations and reduce the computational time without loss in the solution quality.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.