Exploration of Proximity Heuristics in Length Normalization (1701.01417v1)
Abstract: Ranking functions used in information retrieval are primarily used in the search engines and they are often adopted for various language processing applications. However, features used in the construction of ranking functions should be analyzed before applying it on a data set. This paper gives guidelines on construction of generalized ranking functions with application-dependent features. The paper prescribes a specific case of a generalized function for recommendation system using feature engineering guidelines on the given data set. The behavior of both generalized and specific functions are studied and implemented on the unstructured textual data. The proximity feature based ranking function has outperformed by 52% from regular BM25.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.