Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Graded Clifford Algebras and Graded Skew Clifford Algebras and Their Role in the Classification of Artin-Schelter Regular Algebras (1701.01396v2)

Published 5 Jan 2017 in math.RT

Abstract: This paper is a survey of work done on $\mathbb{N}$-graded Clifford algebras (GCAs) and $\mathbb{N}$-graded \textit{skew} Clifford algebras (GSCAs) \cite{VVW, SV, CaV, NVZ, VVe1, VVe2}. In particular, we discuss the hypotheses necessary for these algebras to be Artin Schelter-regular \cite{AS, ATV1} and show how certain `points' called, point modules, can be associated to them. We may view an AS-regular algebra as a noncommutative analog of the polynomial ring. We begin our survey with a fundamental result in \cite{VVW} that is essential to subsequent results discussed here: the connection between point modules and rank-two quadrics. Using, in part, this connection the authors in \cite{SV} provide a method to construct GCAs with finitely many distinct isomorphism classes of point modules. In \cite{CaV}, Cassidy and Vancliff introduce a quantized analog of a GCA, called a graded \textit{skew} Clifford algebra and Nafari et al. \cite{NVZ} show that most Artin Schelter-regular algebras of global dimension three are either twists of graded skew Clifford algebras of global dimension three or Ore extensions of graded Clifford algebras of global dimension two. Vancliff et al. \cite{VVe1, VVe2} go a step further and generalize the result of \cite{VVW}, between point modules and rank-two quadrics, by showing that point modules over GSCAs are determined by (noncommutative) quadrics of $\mu$-rank at most two.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.