Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Topological Insulators in Random Lattices (1701.00374v1)

Published 2 Jan 2017 in cond-mat.mes-hall and cond-mat.dis-nn

Abstract: Our understanding of topological insulators is based on an underlying crystalline lattice where the local electronic degrees of freedom at different sites hybridize with each other in ways that produce nontrivial band topology, and the search for material systems to realize such phases have been strongly influenced by this. Here we theoretically demonstrate topological insulators in systems with a random distribution of sites in space, i. e., a random lattice. This is achieved by constructing hopping models on random lattices whose ground states possess nontrivial topological nature (characterized e. g., by Bott indices) that manifests as quantized conductances in systems with a boundary. By tuning parameters such as the density of sites (for a given range of fermion hopping), we can achieve transitions from trivial to topological phases. We discuss interesting features of these transitions. In two spatial dimensions, we show this for all five symmetry classes (A, AII, D, DIII and C) that are known to host nontrivial topology in crystalline systems. We expect similar physics to be realizable in any dimension and provide an explicit example of a $Z_2$ topological insulator on a random lattice in three spatial dimensions. Our study not only provides a deeper understanding of the topological phases of non-interacting fermions, but also suggests new directions in the pursuit of the laboratory realization of topological quantum matter.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.