A Note on the Topologicity of Quantale-Valued Topological Spaces
Abstract: For a quantale ${\sf{V}}$, the category $\sf V$-${\bf Top}$ of ${\sf{V}}$-valued topological spaces may be introduced as a full subcategory of those ${\sf{V}}$-valued closure spaces whose closure operation preserves finite joins. In generalization of Barr's characterization of topological spaces as the lax algebras of a lax extension of the ultrafilter monad from maps to relations of sets, for ${\sf{V}}$ completely distributive, ${\sf{V}}$-topological spaces have recently been shown to be characterizable by a lax extension of the ultrafilter monad to ${\sf{V}}$-valued relations. As a consequence, ${\sf{V}}$-$\bf Top$ is seen to be a topological category over $\bf Set$, provided that ${\sf{V}}$ is completely distributive. In this paper we give a choice-free proof that ${\sf{V}}$-$\bf Top$ is a topological category over $\bf Set$ under the considerably milder provision that ${\sf{V}}$ be a spatial coframe. When ${\sf{V}}$ is a continuous lattice, that provision yields complete distributivity of ${\sf{V}}$ in the constructive sense, hence also in the ordinary sense whenever the Axiom of Choice is granted.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.