2000 character limit reached
Hodge Numbers from Picard-Fuchs Equations (1612.09439v2)
Published 30 Dec 2016 in math.AG
Abstract: Given a variation of Hodge structure over $\mathbb{P}1$ with Hodge numbers $(1,1,\dots,1)$, we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-M\"oller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute the Hodge numbers of Zucker's Hodge structure on the corresponding parabolic cohomology groups. We also apply this to families of elliptic curves, K3 surfaces and Calabi-Yau threefolds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.