Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Conditional nonlinear expectations (1612.09103v3)

Published 29 Dec 2016 in math.PR and q-fin.RM

Abstract: Let $\Omega$ be a Polish space with Borel $\sigma$-field $\mathcal{F}$ and countably generated sub $\sigma$-field $\mathcal{G}\subset\mathcal{F}$. Denote by $\mathcal{L}(\mathcal{F})$ the set of all bounded $\mathcal{F}$-upper semianalytic functions from $\Omega$ to the reals and by $\mathcal{L}(\mathcal{G})$ the subset of $\mathcal{G}$-upper semianalytic functions. Let $\mathcal{E}(\cdot|\mathcal{G})\colon\mathcal{L}(\mathcal{F})\to\mathcal{L}(\mathcal{G})$ be a sublinear increasing functional which leaves $\mathcal{L}(\mathcal{G})$ invariant. It is shown that there exists a $\mathcal{G}$-analytic set-valued mapping $\mathcal{P}{\mathcal{G}}$ from $\Omega$ to the set of probabilities which are concentrated on atoms of $\mathcal{G}$ with compact convex values such that $\mathcal{E}(X|\mathcal{G})(\omega)=$ $\sup{P\in\mathcal{P}_{\mathcal{G}}(\omega)} E_P[X]$ if and only if $\mathcal{E}(\cdot |\mathcal{G})$ is pointwise continuous from below and continuous from above on the continuous functions. Further, given another sublinear increasing functional $\mathcal{E}(\cdot)\colon\mathcal{L}(\mathcal{F})\to\mathbb{R}$ which leaves the constants invariant, the tower property $\mathcal{E}(\cdot)=\mathcal{E}(\mathcal{E}(\cdot|\mathcal{G}))$ is characterized via a pasting property of the representing sets of probabilities, and the importance of analytic functions is explained. Finally, it is characterized when a nonlinear version of Fubini's theorem holds true and when the product of a set of probabilities and a set of kernels is compact.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.