Concentration Inequalities for Random Sets (1612.08580v1)
Abstract: In a large, possibly infinite population, each subject is colored red with probability $p$, independently of the others. Then, a finite sub-population is selected, possibly as a function of the coloring. The imbalance in the sub-population is defined as the difference between the number of reds in it and p times its size. This paper presents high-probability upper bounds (tail-bounds) on this imbalance. To present the upper bounds we define the UI dimension --- a new measure for the richness of a set-family. We present three simple rules for upper-bounding the UI dimension of a set-family. Our upper bounds on the imbalance in a sub-population depend only on the size of the sub-population and on the UI dimension of its support. We relate our results to known concepts from machine learning, particularly the VC dimension and Rademacher complexity.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.