Papers
Topics
Authors
Recent
2000 character limit reached

Concentration Inequalities for Random Sets (1612.08580v1)

Published 27 Dec 2016 in math.PR

Abstract: In a large, possibly infinite population, each subject is colored red with probability $p$, independently of the others. Then, a finite sub-population is selected, possibly as a function of the coloring. The imbalance in the sub-population is defined as the difference between the number of reds in it and p times its size. This paper presents high-probability upper bounds (tail-bounds) on this imbalance. To present the upper bounds we define the UI dimension --- a new measure for the richness of a set-family. We present three simple rules for upper-bounding the UI dimension of a set-family. Our upper bounds on the imbalance in a sub-population depend only on the size of the sub-population and on the UI dimension of its support. We relate our results to known concepts from machine learning, particularly the VC dimension and Rademacher complexity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.