Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Finite Size Scaling in the Kuramoto Model (1612.07031v2)

Published 21 Dec 2016 in nlin.AO

Abstract: We investigate the scaling properties of the order parameter and the largest nonvanishing Lyapunov exponent for the fully locked state in the Kuramoto model with a finite number $N$ of oscillators. We show that, for any finite value of $N$, both quantities scale as $(K-K_L){1/2}$ with the coupling strength $K$ sufficiently close to the locking threshold $K_L$. We confirm numerically these predictions for oscillator frequencies evenly spaced in the interval $[-1, 1]$ and additionally find that the coupling range $\delta K$ over which this scaling is valid shrinks like $\delta K \sim N{-\alpha}$ with $\alpha\approx1.5$ as $N \rightarrow \infty$. Away from this interval, the order parameter exhibits the infinite-$N$ behavior $r-r_L \sim (K-K_L){2/3}$ proposed by Paz\'o [Phys. Rev. E 72, 046211 (2005)]. We argue that the crossover between the two behaviors occurs because at the locking threshold, the upper bound of the continuous part of the spectrum of the fully locked state approaches zero as $N$ increases. Our results clarify the convergence to the $N \rightarrow \infty$ limit in the Kuramoto model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.