Papers
Topics
Authors
Recent
2000 character limit reached

Algebraic Problems in Structural Equation Modeling (1612.05994v1)

Published 18 Dec 2016 in math.ST and stat.TH

Abstract: The paper gives an overview of recent advances in structural equation modeling. A structural equation model is a multivariate statistical model that is determined by a mixed graph, also known as a path diagram. Our focus is on the covariance matrices of linear structural equation models. In the linear case, each covariance is a rational function of parameters that are associated to the edges and nodes of the graph. We statistically motivate algebraic problems concerning the rational map that parametrizes the covariance matrix. We review combinatorial tools such as the trek rule, projection to ancestral sets, and a graph decomposition due to Jin Tian. Building on these tools, we discuss advances in parameter identification, i.e., the study of (generic) injectivity of the parametrization, and explain recent results on determinantal relations among the covariances. The paper is based on lectures given at the 8th Mathematical Society of Japan Seasonal Institute.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.