Papers
Topics
Authors
Recent
Search
2000 character limit reached

Machine Reading with Background Knowledge

Published 16 Dec 2016 in cs.AI and cs.CL | (1612.05348v1)

Abstract: Intelligent systems capable of automatically understanding natural language text are important for many artificial intelligence applications including mobile phone voice assistants, computer vision, and robotics. Understanding language often constitutes fitting new information into a previously acquired view of the world. However, many machine reading systems rely on the text alone to infer its meaning. In this paper, we pursue a different approach; machine reading methods that make use of background knowledge to facilitate language understanding. To this end, we have developed two methods: The first method addresses prepositional phrase attachment ambiguity. It uses background knowledge within a semi-supervised machine learning algorithm that learns from both labeled and unlabeled data. This approach yields state-of-the-art results on two datasets against strong baselines; The second method extracts relationships from compound nouns. Our knowledge-aware method for compound noun analysis accurately extracts relationships and significantly outperforms a baseline that does not make use of background knowledge.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.