Bidiagonal Triples
Abstract: We introduce a linear algebraic object called a bidiagonal triple. A bidiagonal triple consists of three diagonalizable linear transformations on a finite-dimensional vector space, each of which acts in a bidiagonal fashion on the eigenspaces of the other two. The concept of bidiagonal triple is a generalization of the previously studied and similarly defined concept of bidiagonal pair. We show that every bidiagonal pair extends to a bidiagonal triple, and we describe the sense in which this extension is unique. In addition we generalize a number of theorems about bidiagonal pairs to the case of bidiagonal triples. In particular we use the concept of a parameter array to classify bidiagonal triples up to isomorphism. We also describe the close relationship between bidiagonal triples and the representation theory of the Lie algebra $sl_2$ and the quantum algebra $U_q(sl_2)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.