Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the origin of dual Lax pairs and their $r$-matrix structure (1612.04281v4)

Published 13 Dec 2016 in math-ph, hep-th, math.MP, math.SG, and nlin.SI

Abstract: We establish the algebraic origin of the following observations made previously by the authors and coworkers: (i) A given integrable PDE in $1+1$ dimensions within the Zakharov-Shabat scheme related to a Lax pair can be cast in two distinct, dual Hamiltonian formulations; (ii) Associated to each formulation is a Poisson bracket and a phase space (which are not compatible in the sense of Magri); (iii) Each matrix in the Lax pair satisfies a linear Poisson algebra a la Sklyanin characterized by the {\it same} classical $r$ matrix. We develop the general concept of dual Lax pairs and dual Hamiltonian formulation of an integrable field theory. We elucidate the origin of the common $r$-matrix structure by tracing it back to a single Lie-Poisson bracket on a suitable coadjoint orbit of the loop algebra ${\rm sl}(2,\CC) \otimes \CC (\lambda, \lambda{-1})$. The results are illustrated with the examples of the nonlinear Schr\"odinger and Gerdjikov-Ivanov hierarchies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.