Papers
Topics
Authors
Recent
2000 character limit reached

Path-Complete Graphs and Common Lyapunov Functions (1612.03983v1)

Published 13 Dec 2016 in math.DS

Abstract: A Path-Complete Lyapunov Function is an algebraic criterion composed of a finite number of functions, called its pieces, and a directed, labeled graph defining Lyapunov inequalities between these pieces. It provides a stability certificate for discrete-time switching systems under arbitrary switching. In this paper, we prove that the satisfiability of such a criterion implies the existence of a Common Lyapunov Function, expressed as the composition of minima and maxima of the pieces of the Path-Complete Lyapunov function. The converse, however, is not true even for discrete-time linear systems: we present such a system where a max-of-2 quadratics Lyapunov function exists while no corresponding Path-Complete Lyapunov function with 2 quadratic pieces exists. In light of this, we investigate when it is possible to decide if a Path-Complete Lyapunov function is less conservative than another. By analyzing the combinatorial and algebraic structure of the graph and the pieces respectively, we provide simple tools to decide when the existence of such a Lyapunov function implies that of another.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.