Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

On the SNR Variability in Noisy Compressed Sensing (1612.03794v3)

Published 12 Dec 2016 in cs.IT and math.IT

Abstract: Compressed sensing (CS) is a sampling paradigm that allows to simultaneously measure and compress signals that are sparse or compressible in some domain. The choice of a sensing matrix that carries out the measurement has a defining impact on the system performance and it is often advocated to draw its elements randomly. It has been noted that in the presence of input (signal) noise, the application of the sensing matrix causes SNR degradation due to the noise folding effect. In fact, it might also result in the variations of the output SNR in compressive measurements over the support of the input signal, potentially resulting in unexpected non-uniform system performance. In this work, we study the impact of a distribution from which the elements of a sensing matrix are drawn on the spread of the output SNR. We derive analytic expressions for several common types of sensing matrices and show that the SNR spread grows with the decrease of the number of measurements. This makes its negative effect especially pronounced for high compression rates that are often of interest in CS.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube