Papers
Topics
Authors
Recent
Search
2000 character limit reached

Intertwining operators and vector-valued modular forms for minimal models

Published 7 Dec 2016 in math.QA and math.NT | (1612.02134v1)

Abstract: Using the language of vertex operator algebras (VOAs) and vector-valued modular forms we study the modular group representations and spaces of 1-point functions associated to intertwining operators for Virasoro minimal model VOAs. We examine all representations of dimension less than four associated to irreducible modules for minimal models, and determine when the kernel of these representations is a congruence or noncongruence subgroup of the modular group. Arithmetic criteria are given on the indexing of the irreducible modules for minimal models that imply the associated modular group representation has a noncongruence kernel, independent of the dimension of the representation. The algebraic structure of the spaces of 1-point functions for intertwining operators is also studied, via a comparison with the associated spaces of holomorphic vector-valued modular forms.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.