Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes (1612.01566v3)

Published 5 Dec 2016 in math.AP and gr-qc

Abstract: We derive precise late-time asymptotics for solutions to the wave equation on spherically symmetric, stationary and asymptotically flat spacetimes including as special cases the Schwarzschild and Reissner-Nordstrom families of black holes. We also obtain late-time asymptotics for the time derivatives of all orders and for the radiation field along null infinity. We show that the leading-order term in the asymptotic expansion is related to the existence of the conserved Newman-Penrose quantities on null infinity. As a corollary we obtain a characterization of all solutions which satisfy Price's polynomial law as a lower bound. Our analysis relies on physical space techniques and uses the vector field approach for almost-sharp decay estimates introduced in our companion paper. In the black hole case, our estimates hold in the domain of outer communications up to and including the event horizon. Our work is motivated by the stability problem for black hole exteriors and strong cosmic censorship for black hole interiors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.