2000 character limit reached
Canonical Correlation Analysis for Analyzing Sequences of Medical Billing Codes (1612.00516v2)
Published 1 Dec 2016 in stat.ML and cs.LG
Abstract: We propose using canonical correlation analysis (CCA) to generate features from sequences of medical billing codes. Applying this novel use of CCA to a database of medical billing codes for patients with diverticulitis, we first demonstrate that the CCA embeddings capture meaningful relationships among the codes. We then generate features from these embeddings and establish their usefulness in predicting future elective surgery for diverticulitis, an important marker in efforts for reducing costs in healthcare.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.