Papers
Topics
Authors
Recent
2000 character limit reached

Star bodies with completely symmetric sections (1611.09443v1)

Published 29 Nov 2016 in math.MG

Abstract: We say that a star body $K$ is completely symmetric if it has centroid at the origin and its symmetry group $G$ forces any ellipsoid whose symmetry group contains $G$, to be a ball. In this short note, we prove that if all central sections of a star body $L$ are completely symmetric, then $L$ has to be a ball. A special case of our result states that if all sections of $L$ are origin symmetric and 1-symmetric, then $L$ has to be a Euclidean ball. This answers a question from \cite{R2}. Our result is a consequence of a general theorem that we establish, stating that if the restrictions in almost all equators of a real function $f$ defined on the sphere, are isotropic functions, then $f$ is constant a.e. In the last section of this note, applications, improvements and related open problems are discussed and two additional open questions from \cite{R} and \cite{R2} are answered.}

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.