Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Stability of gap soliton complexes in the nonlinear Schrödinger equation with periodic potential and repulsive nonlinearity (1611.09262v1)

Published 28 Nov 2016 in nlin.PS

Abstract: The work is devoted to numerical investigation of stability of stationary localized modes ("gap solitons") for the one-dimentional nonlinear Schr\"odinger equation (NLSE) with periodic potential and repulsive nonlinearity. Two classes of the modes are considered: a bound state of a pair of in-phase and out-of-phase fundamental gap solitons (FGSs) from the first bandgap separated by various number of empty potential wells. Using the standard framework of linear stability analysis, we computed the linear spectra for the gap solitons by means of the Fourier collocation method and the Evans function method. We found that the gap solitons of the first and second classes are exponentially unstable for odd and even numbers of separating periods of the potential, respectively. The real parts of unstable eigenvalues in corresponding spectra decay with the distance between FGSs exponentially. On the contrary, we observed that the modes of the first and second classes are either linearly stable or exhibit weak oscillatory instabilities if the number of empty potential wells separating FGSs is even and odd, respectively. In both cases, the oscillatory instabilities arise in some vicinity of upper bandgap edge. In order to check the linear stability results, we fulfilled numerical simulations for the time-dependent NLSE by means of a finite-difference scheme. As a result, all the considered exponentially unstable solutions have been deformed to long-lived pulsating formations whereas stable solutions conserved their shapes for a long time.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.