Quasilinear parabolic stochastic evolution equations via maximal $ L^{p} $-regularity (1611.09241v2)
Abstract: We study the Cauchy problem for an abstract quasilinear stochastic parabolic evolution equation on a Banach space driven by a cylindrical Brownian motion. We prove existence and uniqueness of a local strong solution up to a maximal stopping time, that is characterised by a blow-up alternative. The key idea is an iterative application of the theory about maximal $ Lp $- regularity for semilinear stochastic evolution equations by Van Neerven, Veraar and Weis. We apply our local well-posedness result to a convection-diffusion equation on a bounded domain with Dirichlet, Neumann or mixed boudary conditions and to a generalized Navier-Stokes equation describing non-Newtonian fluids. In the first example, we can even show that the solution exists globally.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.