Papers
Topics
Authors
Recent
2000 character limit reached

Quasilinear parabolic stochastic evolution equations via maximal $ L^{p} $-regularity (1611.09241v2)

Published 28 Nov 2016 in math.FA and math.PR

Abstract: We study the Cauchy problem for an abstract quasilinear stochastic parabolic evolution equation on a Banach space driven by a cylindrical Brownian motion. We prove existence and uniqueness of a local strong solution up to a maximal stopping time, that is characterised by a blow-up alternative. The key idea is an iterative application of the theory about maximal $ Lp $- regularity for semilinear stochastic evolution equations by Van Neerven, Veraar and Weis. We apply our local well-posedness result to a convection-diffusion equation on a bounded domain with Dirichlet, Neumann or mixed boudary conditions and to a generalized Navier-Stokes equation describing non-Newtonian fluids. In the first example, we can even show that the solution exists globally.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.