Orbifold kähler groups and the shafarevich conjecture for hirzebruch's covering surfaces with equal weights (1611.09178v1)
Abstract: This article is devoted to examples of (orbifold) K\"ahler groups from the perspective of the so-called Shafarevich conjecture on holomorphic convexity. It aims at pointing out that every quasi-projective complex manifold with an 'interesting' fundamental group gives rise to interesting instances of this long-standing open question. Complements of line arrangements are one of the better known classes of quasi-projective complex surfaces with an interesting fundamental group. We solve the corresponding instance of the Shafarevich conjecture partially giving a proof that the universal covering surface of a Hirzebruch's covering surface with equal weights is holomorphically convex. The final section reduces the Shafarevich conjecture to a question related to the Serre problem.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.