Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Liouville Theorem for a Class of Fractional Systems in $\mathbb{R}^n_+$ (1611.09133v2)

Published 28 Nov 2016 in math.AP

Abstract: Let $0<\alpha,\beta<2$ be any real number. In this paper, we investigate the following semilinear system involving the fractional Laplacian \begin{equation*} \left{\begin{array}{lll} (-\lap){\alpha/2} u(x)=f(v(x)), & (-\lap){\beta/2} v(x)=g(u(x)), & \qquad x\in\mathbb{R}n_+, u,v\geq0, & \qquad x\in\mathbb{R}n\setminus\mathbb{R}n_+. \end{array}\right. \end{equation*} Applying a direct method of moving planes for the fractional Laplacian, without any decay assumption on the solutions at infinity, we prove Liouville theorems of nonnegative solutions under some natural conditions on $f$ and $g$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.