The A Priori Estimate and Existence of the Positive Solution for A Nonlinear System Involving the Fractional Laplacian
Abstract: In the paper, we consider the fractional elliptic system \begin{equation*}\left{\begin{array}{ll} (- \Delta){\frac{\alpha_1}{2}}u(x)+\sum\limitsn_{i=1}b_i(x)\frac{\partial u}{\partial x_i}+B(x)u(x)=f(x,u,v),& \mbox { in } \Omega,\ (- \Delta){\frac{\alpha_2}{2}}v(x)+\sum\limitsn_{i=1}c_i(x)\frac{\partial v}{\partial x_i}+C(x)v(x)=g(x,u,v),& \mbox { in } \Omega,\ u=v=0, & \mbox { in } \mathbb{R}n\setminus\Omega, \end{array} \right.\label{a-1.2} \end{equation*} where $\Omega$ is a bounded domain with $C2$ boundary in $\mathbb{R}n$ and $n>\max{\alpha_1,\alpha_2}$. We first utilize the blowing-up and re-scaling method to derive the a priori estimate for positive solutions when $1<\alpha_1,\alpha_2 <2$. Then for $0<\alpha_1,\alpha_2 <1$, we obtain the regularity estimate of positive solutions. On top of this, using the topological degree theory we prove the existence of positive solutions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.