Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry of Solutions to Semilinear Equations Involving the Fractional Laplacian on $\mathbb{R}^n$ and $\mathbb{R}^n_+$ (1610.00122v2)

Published 1 Oct 2016 in math.AP

Abstract: Let $0<\alpha<2$ be any real number. In this paper, we investigate the following semilinear equations involving the fractional Laplacian \begin{equation}(-\bigtriangleup){\alpha/2} u(x)=f(u),\end{equation} on $\mathbb{R}n$ and $\mathbb{R}n_+$. Applying a direct method of moving planes for the fractional Laplacian, we prove symmetry and nonexistence of positive solutions on $\mathbb{R}n$ and $\mathbb{R}n_+$ under mild conditions on $f$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.