Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Number Balancing is as hard as Minkowski's Theorem and Shortest Vector (1611.08757v2)

Published 26 Nov 2016 in cs.DM, cs.CC, cs.CG, and cs.DS

Abstract: The number balancing (NBP) problem is the following: given real numbers $a_1,\ldots,a_n \in [0,1]$, find two disjoint subsets $I_1,I_2 \subseteq [n]$ so that the difference $|\sum_{i \in I_1}a_i - \sum_{i \in I_2}a_i|$ of their sums is minimized. An application of the pigeonhole principle shows that there is always a solution where the difference is at most $O(\frac{\sqrt{n}}{2n})$. Finding the minimum, however, is NP-hard. In polynomial time,the differencing algorithm by Karmarkar and Karp from 1982 can produce a solution with difference at most $n{-\Theta(\log n)}$, but no further improvement has been made since then. In this paper, we show a relationship between NBP and Minkowski's Theorem. First we show that an approximate oracle for Minkowski's Theorem gives an approximate NBP oracle. Perhaps more surprisingly, we show that an approximate NBP oracle gives an approximate Minkowski oracle. In particular, we prove that any polynomial time algorithm that guarantees a solution of difference at most $2{\sqrt{n}} / 2{n}$ would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube