Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators (1611.06750v1)
Abstract: We first establish a sharp relation between the order of vanishing of a Dirichlet eigenfunction at a point and the leading term of the asymptotic expansion of the Dirichlet eigenvalue variation, as a removed compact set concentrates at that point. Then we apply this spectral stability result to the study of the asymptotic behaviour of eigenvalues of Aharonov-Bohm operators with two colliding poles moving on an axis of symmetry of the domain.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.