Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Spikes as regularizers (1611.06245v1)

Published 18 Nov 2016 in cs.NE, cs.LG, and stat.ML

Abstract: We present a confidence-based single-layer feed-forward learning algorithm SPIRAL (Spike Regularized Adaptive Learning) relying on an encoding of activation spikes. We adaptively update a weight vector relying on confidence estimates and activation offsets relative to previous activity. We regularize updates proportionally to item-level confidence and weight-specific support, loosely inspired by the observation from neurophysiology that high spike rates are sometimes accompanied by low temporal precision. Our experiments suggest that the new learning algorithm SPIRAL is more robust and less prone to overfitting than both the averaged perceptron and AROW.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube