Papers
Topics
Authors
Recent
2000 character limit reached

Imprecise Continuous-Time Markov Chains (1611.05796v2)

Published 17 Nov 2016 in math.PR

Abstract: Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computationally tractable, they rely on a number of assumptions that may not be realistic for the domain of application; in particular, the ability to provide exact numerical parameter assessments, and the applicability of time-homogeneity and the eponymous Markov property. In this work, we extend these models to imprecise continuous-time Markov chains (ICTMC's), which are a robust generalisation that relaxes these assumptions while remaining computationally tractable. More technically, an ICTMC is a set of "precise" continuous-time finite-state stochastic processes, and rather than computing expected values of functions, we seek to compute lower expectations, which are tight lower bounds on the expectations that correspond to such a set of "precise" models. Note that, in contrast to e.g. Bayesian methods, all the elements of such a set are treated on equal grounds; we do not consider a distribution over this set. The first part of this paper develops a formalism for describing continuous-time finite-state stochastic processes that does not require the aforementioned simplifying assumptions. Next, this formalism is used to characterise ICTMC's and to investigate their properties. The concept of lower expectation is then given an alternative operator-theoretic characterisation, by means of a lower transition operator, and the properties of this operator are investigated as well. Finally, we use this lower transition operator to derive tractable algorithms (with polynomial runtime complexity w.r.t. the maximum numerical error) for computing the lower expectation of functions that depend on the state at any finite number of time points.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.