Geometry of the moduli of parabolic bundles on elliptic curves (1611.05417v1)
Abstract: The goal of this paper is the study of simple rank 2 parabolic vector bundles over a $2$-punctured elliptic curve $C$. We show that the moduli space of these bundles is a non-separated gluing of two charts isomorphic to $\mathbb{P}1 \times \mathbb{P}1$. We also showcase a special curve $\Gamma$ isomorphic to $C$ embedded in this space, and this way we prove a Torelli theorem. This moduli space is related to the moduli space of semistable parabolic bundles over $\mathbb{P}1$ via a modular map which turns out to be the 2:1 cover ramified in $\Gamma$. We recover the geometry of del Pezzo surfaces of degree 4 and we reconstruct all their automorphisms via elementary transformations of parabolic vector bundles.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.