Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning long-term dependencies for action recognition with a biologically-inspired deep network (1611.05216v3)

Published 16 Nov 2016 in cs.CV

Abstract: Despite a lot of research efforts devoted in recent years, how to efficiently learn long-term dependencies from sequences still remains a pretty challenging task. As one of the key models for sequence learning, recurrent neural network (RNN) and its variants such as long short term memory (LSTM) and gated recurrent unit (GRU) are still not powerful enough in practice. One possible reason is that they have only feedforward connections, which is different from the biological neural system that is typically composed of both feedforward and feedback connections. To address this problem, this paper proposes a biologically-inspired deep network, called shuttleNet\footnote{Our code is available at \url{https://github.com/shiyemin/shuttlenet}}. Technologically, the shuttleNet consists of several processors, each of which is a GRU while associated with multiple groups of cells and states. Unlike traditional RNNs, all processors inside shuttleNet are loop connected to mimic the brain's feedforward and feedback connections, in which they are shared across multiple pathways in the loop connection. Attention mechanism is then employed to select the best information flow pathway. Extensive experiments conducted on two benchmark datasets (i.e UCF101 and HMDB51) show that we can beat state-of-the-art methods by simply embedding shuttleNet into a CNN-RNN framework.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com