Papers
Topics
Authors
Recent
Search
2000 character limit reached

Macdonald symmetry at $q=1$ and a new class of inv-preserving bijections on words

Published 15 Nov 2016 in math.CO | (1611.04973v2)

Abstract: We give a direct combinatorial proof of the $q,t$-symmetry relation $\tilde H_{\mu}(X;q,t)=\tilde H_{\mu'}(X;t,q)$ in the Macdonald polynomials $\tilde H_\mu$ at the specialization $q=1$. The bijection demonstrates that the Macdonald inv statistic on the permutations of any given row of a Young diagram filling is Mahonian. Moreover, our bijection gives rise a family of new bijections on words that preserves the classical Mahonian inv statistic.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.