Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pfaffians and nonintersecting paths in graphs with cycles: Grassmann algebra methods (1611.04889v2)

Published 15 Nov 2016 in math.CO and hep-th

Abstract: After recalling the definition of Grassmann algebra and elements of Grassmann--Berezin calculus, we use the expression of Pfaffians as Grassmann integrals to generalize a series of formulas relating generating functions of paths in digraphs to Pfaffians. We start with the celebrated Lindstr\"om-Gessel-Viennot formula, which we derive in the general case of a graph with cycles. We then make further use of Grassmann algebraic tools to prove a generalization of the results of (Stembridge 1990). Our results, which are applicable to graphs with cycles, are formulated in terms of systems of nonintersecting paths and nonintersecting cycles in digraphs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.