Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 21 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The regular representations of $\mathrm{GL}_{N}$ over finite local principal ideal rings (1611.04796v1)

Published 15 Nov 2016 in math.RT

Abstract: Let $\mathfrak{o}$ be the ring of integers in a non-Archimedean local field with finite residue field, $\mathfrak{p}$ its maximal ideal, and $r\geq2$ an integer. An irreducible representation of the finite group $G_{r}=\mathrm{GL}{N}(\mathfrak{o}/\mathfrak{p}{r})$ is called regular if its restriction to the principal congruence kernel $K{r-1}=1+\mathfrak{p}{r-1}\mathrm{M}{N}(\mathfrak{o}/\mathfrak{p}{r})$ consists of representations whose stabilisers modulo $K{1}$ are centralisers of regular elements in $\mathrm{M}{N}(\mathfrak{o}/\mathfrak{p})$. The regular representations form the largest class of representations of $G{r}$ which is currently amenable to explicit construction. Their study, motivated by constructions of supercuspidal representations, goes back to Shintani, but the general case remained open for a long time. In this paper we give an explicit construction of all the regular representations of $G_{r}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube