Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

New approach to canonical partition functions computation in $N_f=2$ lattice QCD at finite baryon density (1611.04229v1)

Published 14 Nov 2016 in hep-lat and hep-ph

Abstract: We propose and test a new approach to computation of canonical partition functions in lattice QCD at finite density. We suggest a few steps procedure. We first compute numerically the quark number density for imaginary chemical potential $i\mu_{qI}$. Then we restore the grand canonical partition function for imaginary chemical potential using fitting procedure for the quark number density. Finally we compute the canonical partition functions using high precision numerical Fourier transformation. Additionally we compute the canonical partition functions using known method of the hopping parameter expansion and compare results obtained by two methods in the deconfining as well as in the confining phases. The agreement between two methods indicates the validity of the new method. Our numerical results are obtained in two flavor lattice QCD with clover improved Wilson fermions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube