Scalar curvature and singular metrics (1611.04056v2)
Abstract: Let $Mn$, $n\ge3$, be a compact differentiable manifold with nonpositive Yamabe invariant $\sigma(M)$. Suppose $g_0$ is a continuous metric with $V(M, g_0)=1$, smooth outside a compact set $\Sigma$, and is in $W{1,p}_{loc}$ for some $p>n$. Suppose the scalar curvature of $g_0$ is at least $\sigma(M)$ outside $\Sigma$. We prove that $g_0$ is Einstein outside $\Sigma$ if the codimension of $\Sigma$ is at least $2$. If in addition, $g_0$ is Lipschitz then $g_0$ is smooth and Einstein after a change the smooth structure. If $\Sigma$ is a compact embedded hypersurface, and $g_0$ is smooth up to $\Sigma$ from two sides of $\Sigma$, and if the difference of the mean curvatures along $\Sigma$ at two sides of $\Sigma$ has a fixed appropriate sign. Then $g_0$ is also Einstein outside $\Sigma$. For manifolds with dimension between $3$ and $7$ without spin assumption, we obtain a positive mass theorem on an asymptotically flat manifold for metrics with a compact singular set of codimension at least $2$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.