Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Scalar curvature and singular metrics (1611.04056v2)

Published 13 Nov 2016 in math.DG

Abstract: Let $Mn$, $n\ge3$, be a compact differentiable manifold with nonpositive Yamabe invariant $\sigma(M)$. Suppose $g_0$ is a continuous metric with $V(M, g_0)=1$, smooth outside a compact set $\Sigma$, and is in $W{1,p}_{loc}$ for some $p>n$. Suppose the scalar curvature of $g_0$ is at least $\sigma(M)$ outside $\Sigma$. We prove that $g_0$ is Einstein outside $\Sigma$ if the codimension of $\Sigma$ is at least $2$. If in addition, $g_0$ is Lipschitz then $g_0$ is smooth and Einstein after a change the smooth structure. If $\Sigma$ is a compact embedded hypersurface, and $g_0$ is smooth up to $\Sigma$ from two sides of $\Sigma$, and if the difference of the mean curvatures along $\Sigma$ at two sides of $\Sigma$ has a fixed appropriate sign. Then $g_0$ is also Einstein outside $\Sigma$. For manifolds with dimension between $3$ and $7$ without spin assumption, we obtain a positive mass theorem on an asymptotically flat manifold for metrics with a compact singular set of codimension at least $2$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.