Papers
Topics
Authors
Recent
2000 character limit reached

Nearest-Neighbor Interaction Systems in the Tensor-Train Format

Published 11 Nov 2016 in math.NA, physics.chem-ph, and quant-ph | (1611.03755v2)

Abstract: Low-rank tensor approximation approaches have become an important tool in the scientific computing community. The aim is to enable the simulation and analysis of high-dimensional problems which cannot be solved using conventional methods anymore due to the so-called curse of dimensionality. This requires techniques to handle linear operators defined on extremely large state spaces and to solve the resulting systems of linear equations or eigenvalue problems. In this paper, we present a systematic tensor-train decomposition for nearest-neighbor interaction systems which is applicable to a host of different problems. With the aid of this decomposition, it is possible to reduce the memory consumption as well as the computational costs significantly. Furthermore, it can be shown that in some cases the rank of the tensor decomposition does not depend on the network size. The format is thus feasible even for high-dimensional systems. We will illustrate the results with several guiding examples such as the Ising model, a system of coupled oscillators, and a CO oxidation model.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.