Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic representation of the Reynolds transport theorem: revisiting large-scale modeling

Published 9 Nov 2016 in physics.flu-dyn | (1611.03413v1)

Abstract: We explore the potential of a formulation of the Navier-Stokes equations incorporating a random description of the small-scale velocity component. This model, established from a version of the Reynolds transport theorem adapted to a stochastic representation of the flow, gives rise to a large-scale description of the flow dynamics in which emerges an anisotropic subgrid tensor, reminiscent to the Reynolds stress tensor, together with a drift correction due to an inhomogeneous turbulence. The corresponding subgrid model, which depends on the small scales velocity variance, generalizes the Boussinesq eddy viscosity assumption. However, it is not anymore obtained from an analogy with molecular dissipation but ensues rigorously from the random modeling of the flow. This principle allows us to propose several subgrid models defined directly on the resolved flow component. We assess and compare numerically those models on a standard Green-Taylor vortex flow at Reynolds 1600. The numerical simulations, carried out with an accurate divergence-free scheme, outperform classical large-eddies formulations and provides a simple demonstration of the pertinence of the proposed large-scale modeling.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.