Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the differentiability of solutions of stochastic evolution equations with respect to their initial values (1611.00856v1)

Published 3 Nov 2016 in math.PR and math.AP

Abstract: In this article we study the differentiability of solutions of parabolic semilinear stochastic evolution equations (SEEs) with respect to their initial values. We prove that if the nonlinear drift coefficients and the nonlinear diffusion coefficients of the considered SEEs are $n$-times continuously Fr\'{e}chet differentiable, then the solutions of the considered SEEs are also $n$-times continuously Fr\'{e}chet differentiable with respect to their initial values. Moreover, a key contribution of this work is to establish suitable enhanced regularity properties of the derivative processes of the considered SEE in the sense that the dominating linear operator appearing in the SEE smoothes the higher order derivative processes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.