Papers
Topics
Authors
Recent
2000 character limit reached

Kardar-Parisi-Zhang Interfaces with Inward Growth (1611.00650v2)

Published 2 Nov 2016 in cond-mat.stat-mech and math.PR

Abstract: We study the $(1+1)$-dimensional Kardar-Parisi-Zhang (KPZ) interfaces growing inward from ring-shaped initial conditions, experimentally and numerically, using growth of a turbulent state in liquid-crystal electroconvection and an off-lattice Eden model, respectively. To realize the ring initial condition experimentally, we introduce a holography-based technique that allows us to design the initial condition arbitrarily. Then, we find that fluctuation properties of ingrowing circular interfaces are distinct from those for the curved or circular KPZ subclass and, instead, are characterized by the flat subclass. More precisely, we find an asymptotic approach to the Tracy-Widom distribution for the Gaussian orthogonal ensemble and the $\text{Airy}_1$ spatial correlation, as long as time is much shorter than the characteristic time determined by the initial curvature. Near this characteristic time, deviation from the flat KPZ subclass is found, which can be explained in terms of the correlation length and the circumference. Our results indicate that the sign of the initial curvature has a crucial role in determining the universal distribution and correlation functions of the KPZ class.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.