2000 character limit reached
Nodal intersections for random waves against a segment on the 3-dimensional torus
Published 2 Nov 2016 in math.NT | (1611.00571v2)
Abstract: We consider random Gaussian eigenfunctions of the Laplacian on the three-dimensional flat torus, and investigate the number of nodal intersections against a straight line segment. The expected intersection number, against any smooth curve, is universally proportional to the length of the reference curve, times the wavenumber, independent of the geometry. We found an upper bound for the nodal intersections variance, depending on the arithmetic properties of the straight line. The considerations made establish a close relation between this problem and the theory of lattice points on spheres.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.