Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Schur-Weyl Duality for Heisenberg Cosets (1611.00305v1)

Published 1 Nov 2016 in math.QA, hep-th, and math.RT

Abstract: Let $V$ be a simple vertex operator algebra containing a rank $n$ Heisenberg vertex algebra $H$ and let $C=\text{Com}\left( {H}, {V}\right)$ be the coset of ${H}$ in ${V}$. Assuming that the representation categories of interest are vertex tensor categories in the sense of Huang, Lepowsky and Zhang, a Schur-Weyl type duality for both simple and indecomposable but reducible modules is proven. Families of vertex algebra extensions of ${C}$ are found and every simple ${C}$-module is shown to be contained in at least one ${V}$-module. A corollary of this is that if ${V}$ is rational and $C_2$-cofinite and CFT-type, and $\text{Com}\left( {C}, {V}\right)$ is a rational lattice vertex operator algebra, then so is ${C}$. These results are illustrated with many examples and the $C_1$-cofiniteness of certain interesting classes of modules is established.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube