Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Affine cubic surfaces and character varieties of knots (1610.08947v1)

Published 27 Oct 2016 in math.GT and math.QA

Abstract: It is known that the fundamental group homomorphism $\pi_1(T2) \to \pi_1(S3\setminus K)$ induced by the inclusion of the boundary torus into the complement of a knot $K$ in $S3$ is a complete knot invariant. Many classical invariants of knots arise from the natural (restriction) map induced by the above homomorphism on the $\mathrm{SL}_2$-character varieties of the corresponding fundamental groups. In our earlier work [BS16], we proposed a conjecture that the classical restriction map admits a canonical 2-parameter deformation into a smooth cubic surface. In this paper, we show that (modulo some mild technical conditions) our conjecture follows from a known conjecture of Brumfiel and Hilden [BH95] on the algebraic structure of the peripheral system of a knot. We then confirm the Brumfiel-Hilden conjecture for an infinite class of knots, including all torus knots, 2-bridge knots, and certain pretzel knots. We also show the class of knots for which the Brumfiel-Hilden conjecture holds is closed under taking connect sums and certain knot coverings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube