Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient Estimation of COM-Poisson Regression and Generalized Additive Model (1610.08244v3)

Published 26 Oct 2016 in stat.ME

Abstract: The Conway-Maxwell-Poisson (CMP) or COM-Poison regression is a popular model for count data due to its ability to capture both under dispersion and over dispersion. However, CMP regression is limited when dealing with complex nonlinear relationships. With today's wide availability of count data, especially due to the growing collection of data on human and social behavior, there is need for count data models that can capture complex nonlinear relationships. One useful approach is additive models; but, there has been no additive model implementation for the CMP distribution. To fill this void, we first propose a flexible estimation framework for CMP regression based on iterative reweighed least squares (IRLS) and then extend this model to allow for additive components using a penalized splines approach. Because the CMP distribution belongs to the exponential family, convergence of IRLS is guaranteed under some regularity conditions. Further, it is also known that IRLS provides smaller standard errors compared to gradient-based methods. We illustrate the usefulness of this approach through extensive simulation studies and using real data from a bike sharing system in Washington, DC.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.