Asymptotic behavior of supercuspidal representations and Sato-Tate equidistribution for families
Abstract: We establish properties of families of automorphic representations as we vary prescribed supercuspidal representations at a given finite set of primes. For the tame supercuspidals constructed by J.-K. Yu we prove the limit multiplicity property with error terms. Thereby we obtain a Sato-Tate equidistribution for the Hecke eigenvalues of these families. The main new ingredient is to show that the orbital integrals of matrix coefficients of tame supercuspidal representations with increasing formal degree on a connected reductive $p$-adic group tend to zero uniformly for every noncentral semisimple element.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.