Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic behavior of supercuspidal representations and Sato-Tate equidistribution for families

Published 24 Oct 2016 in math.RT | (1610.07567v2)

Abstract: We establish properties of families of automorphic representations as we vary prescribed supercuspidal representations at a given finite set of primes. For the tame supercuspidals constructed by J.-K. Yu we prove the limit multiplicity property with error terms. Thereby we obtain a Sato-Tate equidistribution for the Hecke eigenvalues of these families. The main new ingredient is to show that the orbital integrals of matrix coefficients of tame supercuspidal representations with increasing formal degree on a connected reductive $p$-adic group tend to zero uniformly for every noncentral semisimple element.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.